สมการกำลังสอง
เราสามารถหาคำตอบของสมการ ax2 + bx + c = 0 ได้จากสูตร x = เมื่อ a, b, c เป็นค่าคงตัว a 0 และ b2 – 4ac 0 สมการกำลังสอง ax2 + bx + c = 0 เมื่อ a, b, c เป็นค่าคงตัว a 0 และ b2 – 4ac <>
พหุนาม
เอกนาม คือ นิพจน์ที่สามารถเขียนให้อยู่ในรูปการคูณของค่าคงตัวกับตัวแปรตั้งแต่หนึ่งตัวขึ้นไป โดยที่เลขชี้กำลังของตัวแปรแต่ละตัวเป็นศูนย์หรือจำนวนเต็มบวก พหุนาม คือ นิพจน์สามารถเขียนในรูปเอกนามหรือสามารถเขียนในรูปการบวกของเอกนามตั้งแต่สองเอกนามขึ้นไป การแยกตัวประกอบของพหุนาม การแยกตัวประกอบของพหุนาม คือ การเขียนพหุนามนั้นในรูปของการคูณของพหุนามที่มีดีกรีต่ำกว่า พหุนามดีกรีสองตัวแปรเดียว คือ พหุนามที่เขียนได้ในรูป ax2 + bx +cเมื่อ a, b, c เป็นค่าคงตัวที่a 0 และ x เป็นตัวแปร การแยกตัวประกอบของพหุนามดีกรีสอง x2+ bx + c เมื่อ b และ c เป็นจำนวนเต็ม ทำได้เมื่อสามารถหาจำนวนเต็มสองจำนวนที่คูณกันได้ c และ บวกกันได้ b ให้ d และ e แทนจำนวนเต็มสองจำนวนดังกล่าว ดังนั้น de = c d + e = b ฉะนั้น x2 + bx + c = x2 + (d + e)x + de = ( x2 + dx ) + ( ex + de ) = ( x + d )x + ( x + d )e = ( x + d ) ( x + e ) ดังนั้น x2 + bx +c แยกตัวประกอบได้เป็น ( x + d ) ( x + e ) ตัวอย่าง (6x-5) (x+1) = (6x-5) (x) + (6x-5) (1) = 6x2 – 5x + 6x – 5 = 6x2 + (5x+6x) – 5 = 6x2 -5x +6x -5 = 6x2 + x – 5 จากตัวอย่างข้างต้น อาจแสดงวิธีหาพหุนามที่เป็นผลลัพธ์ได้ดังนี้ 1. (6x – 5)(x + 1) = 6x2 - พจน์หน้าของพหุนามวงเล็บแรก x พจน์หน้าของพหุนามวงเล็บหลัง = พจน์หน้าของพหุนามของผลลัพธ์ 2. (6x - 5)(x + 1) = -5 -พจน์หลังของพหุนามวงเล็บแรก x พจน์หลังของพหุนามวงเล็บหลัง = พจน์หลังของพหุนามของผลลัพธ์ 3. (6x – 5)(x + 1) = 6x + (-5x ) - พจน์หน้าของพหุนามวงเล็บแรก x พจน์หลังของพหุนามวงเล็บหลัง + พจน์หน้าของพหุนามวงเล็บแรก x พจน์หน้าของพหุนามวงเล็บหลัง พจน์กลางของพหุนามที่เป็นผลลัพธ์ การแยกตัวประกอบของพหุนามดีกรีสองที่เป็นกำลังสองสมบูรณ์ กำลังสองสมบูรณ์ คือ พหุนามดีกรีสองที่แยกตัวประกอบแล้วได้ตัวประกอบเป็นพหุนามดีกรีหนึ่งซ้ำกัน ดังนั้น พหุนามดีกรีสองที่เป็นกำลังสองสมบูรณ์แยกตัวประกอบได้ดังนี้ x2 + 2ax + a2 = ( x + a )2 x2 – 2ax + a2 = ( x – a )2 รูปทั่วไปของพหุนามที่เป็นกำลังสองสมบูรณ์คือ a2 +2ab + b2 และ a2 -2ab +b2 เมื่อ a และ b เป็นพหุนาม แยกตัวประกอบได้ดังนี้ สูตร a2 +2ab + b2 = ( a + b )2 a2 -2ab +b2 = (a-b)2 การแยกตัวประกอบของพหุนามดีกรีสองที่เป็นผลต่างของกำลังสอง พหุนามดีกรีสองที่สามารถเขียนได้ในรูป x2 – a2 เมื่อ a เป็นจำนวนจริงบวกเรียกว่า ผลต่างของกำลังสอง จาก x2 – a2 สามารถแยกตัวประกอบได้ดังนี้ x2 – a2 = ( x + a ) ( x – a ) สูตร x2 – a2 = ( x + a ) (x-a) การแยกตัวประกอบของพหุนามดีกรีสองโดยวิธีทำเป็นกำลังสองสมบูรณ์ การแยกตัวประกอบของพหุนามดีกรีสอง x2 + bx + c โดยวิธีทำเป็นกำลังสองสมบูรณ์ สรุปได้คือ 1. จัดพหุนามที่กำหนดให้อยู่ในรูป x2 + 2px +c หรือ x2 -2px +c เมื่อ p เป็นจำนวนจริงบวก 2. ทำบางส่วนของพหุนามที่จัดไว้ในข้อ 1 ให้อยู่ในรูปกำลังสองสมบูรณ์ โดยนำกำลังสองของ p บวกเข้าและลบออกดังนี้ x2 + 2px +c = ( x2 + 2px + p2 ) – p2 + c = ( x + p)2 – ( p2 - c ) x2 – 2px + c = ( x2 - 2px + p2 ) – p2 + c = ( x - p)2 – ( p2 - c ) 3. ถ้า p2 – c = d2 เมื่อ d เป็นจำนวนจริงบวกจากข้อ 2 จะได้ x2 + 2px + c = ( x + p)2 – d2 x2 - 2px + c = ( x - p)2 – d2 4. แยกตัวประกอบของ ( x + p )2 – d2 หรือ ( x – p )2 – d2 โดยใช้สูตรการแยกตัวประกอบของผลต่างของกำลังสอง การแยกตัวประกอบของพหุนามดีกรีสูงกว่าสองที่มีสัมประสิทธิ์เป็นจำนวนเต็ม พหุนามที่อยู่ในรูป A3 + B3 และ A3 - B3 ว่าผลบวกของกำลังสาม ตามลำดับ สูตร A3 + B3 = ( A + B )( A2 –AB + B2) A3 - B3 = ( A - B )( A2 +AB + B2)
การทดลองสุ่ม คือ การกระทำที่เราทราบว่าผลทั้งหมดที่อาจจะเกิดขึ้นมีอะไรบ้าง แต่ไม่สามารถบอกอย่างถูกต้องแน่นอนว่าจะเกิดผลอะไรจากผลทั้งหมดที่เป็นไปได้เหล่านั้น จากการทดลองสุ่มและเราสามารถเขียนทั้งหมดที่อาจเกิดขึ้นจากการทดลองสุ่มได้ โดยอาจใช้แผนภาพช่วย แซมเปิลสเปซ คือ กลุ่มของผลลัพธ์ที่อาจเป็นไปได้ทั้งหมดจากการทดลองสุ่ม ความน่าจะเป็นทางปฏิบัติ = - ความน่าจะเป็นของเหตุการณ์ใดๆ จะเป็นจำนวนใดจำนวนหนึ่งตั้งแต่ 0 ถึง 1
สถิติ
ในเรื่องสถิตินี้ประกอบไปด้วย 1.ตารางแจกแจงความถี่ จะประกอบด้วย 1. อันตรภาคชั้น คือ ช่วงของตัวเลขที่แบ่งเป็นชั้นๆในตารางแจกแจงความถี่ 2. ข้อมูลดิบ คือ ข้อมูลที่ได้มาจากแหล่งข้อมูลโดยตรง 3. ความถี่ คือ จำนวนของข้อมูลดิบในแต่ละช่วงของอันตรภาคชั้น ความรู้ในการสร้างตารางแจกแจงความถี่ 1. ในการสร้างตารางแจกแจงความถี่ จำนวนอันตรภาคชั้นที่นิยมใช้กันคือ 5 ถึง 15 อันตรภาคชั้นตามความมากน้อยของข้อมูล 2. ในการสร้างตารางแจกแจงความถี่ ความกว้างของอันตรภาคชั้นไม่จำเป็นต้องเท่ากันทุกชั้น 3. ในกรณีที่มีคะแนนดิบเป็นจำนวนมากๆ ถ้าค่าที่น้อยที่สุดและค่าที่มากที่สุดของอันตรภาคชั้นเป็นค่าที่สังเกตได้ง่าย การบันทึกกร่อยคะแนนจะสะดวกขึ้น 2.ขอบล่าง = ค่าที่น้อยที่สุดของอันตรภาคชั้นนั้น + ค่าที่มากที่สุดของอันตรภาคชั้นที่ต่ำกว่าหนึ่งชั้น/2 3.ขอบบน = ค่าที่มากที่สุดของอันตรภาคชั้นนั้น + ค่าที่น้อยที่สุดของอันตรภาคชั้นที่สูงกว่าหนึ่งชั้น/2 4. ความกว้างของอันตรภาคชั้น = ขอบล่าง – ขอบบน 5. จุดกึ่งกลางชั้น= หรือ จุดกึ่งกลางชั้น = ค่าที่น้อยที่สุดของอันตรภาคชั้น + ค่าที่มากที่สุดของอันตรภาคชั้น/2 6. ค่ากลางของข้อมูล ค่ากลางของข้อมูล คือ ค่าที่สามารถนำมาแทนข้อมูลกลุ่มนั้นๆ เพื่อที่จะใช้ในการวิเคราะห์ข้อมูลนั้นๆได้ ค่ากลางของข้อมูล สามารถแบ่งออกได้เป็น 3 ชนิดใหญ่ๆ ได้แก่ 1. ค่าเฉลี่ยเลขคณิต ได้จากการหารผลบวกของข้อมูลทั้งหมดด้วยจำนวนข้อมูล 2. ฐานนิยม คือ ข้อมูลที่มีความถี่สูงสุดในข้อมูลนั้น 3. มัธยมฐาน คือ ค่าที่อยู่กึ่งกลางของข้อมูลทั้งหมดซึ่งเมื่อเรียงข้อมูลชุดนั้นจากน้อยไปมาก หรือจากมาไปน้อยแล้ว ข้อมูลที่มากกว่าค่านั้น
เครดิตhttp://k.domaindlx.com/mymath/math12.htm
ไม่มีความคิดเห็น:
แสดงความคิดเห็น